
Towards Distributed Emerging Pattern Mining on Itemset Streams

Björn Jacobs and Henrik Grosskreutz
Fraunhofer IAIS

{firstname.lastname}@iais.fraunhofer.de
Schloss Birlinghoven
53754 Sankt Augustin

Abstract
In this paper, we present a new approach for min-
ing emerging patterns in itemset streams. Unlike
in the classical setting, we do not assume that two
datasets are given and that the task is to find item-
sets occurring more often in one dataset than in
the other. Instead, we look for itemsets that were
seldom in the stream previously, but recently oc-
cur much more often. Our approach differs from
earlier approaches in that it employs a distributed
representation of the candidate space, which is
scattered over a cluster of machines. This paper
describes work in progress, meaning that it con-
centrates on the approach but lacks experimental
evaluation.

1 Introduction
In this paper, we present a new approach to perform Emerg-
ing Pattern Mining on data streams. The task of emerging
pattern mining [Dong and Li, 1999] considers the classi-
cal itemset setting, where the data to be analyzed takes the
form of sets of items. A classical example is market basket
analysis, where every data record, or “transaction”, con-
sists of the set of items bought together by a particular cus-
tomer. Another example is Twitter, where a transaction cor-
responds to an individual tweet and the items correspond to
the words within that tweet.

The goal of emerging pattern mining is to “capture sig-
nificant changes between datasets”, and to “capture emerg-
ing trends in business or demographic data” [Dong and Li,
1999]. In the market basket example, the emerging patterns
would hence be sets of items that are often bought together
in one dataset (for example, in recent sales data), but were
only seldom bought in another dataset (older sales data). In
the Twitter example, the emerging patterns would be words
that co-occur often in one dataset (recent tweets), but sel-
dom in another dataset (older tweets).

While classical algorithms operate on a static dataset,
we consider the setting where the data takes the form of
a stream. That is, we assume that the input is a potentially
infinite sequence of transactions – as in the twitter exam-
ple. Our goal is then to find, at any time, the current set
of emerging patterns, that is, the itemsets that occur much
more frequently in recent transactions than in older trans-
actions. Ultimately, this allows identifying new emerging
trends or topics.

Our approach is based on the idea to keep, in memory,
a representation of the whole space of candidate patterns.
With every candidate pattern, we store a set of statistics,

which are updated whenever a new transaction comes in.
As the space of candidate patterns can be extremely large,
we aim for a distributed computation approach, where the
candidate space (and the computation) can be distributed
on a cluster of machines. The main intention of this ap-
proach is not to speed up the process (which nonetheless
can be a positive side-effect), but to scale out horizontal in
order to realize very large candidate spaces. To this end,
we base our implementation a framework supporting the
distribution of data and computation to multiple nodes - in
our case the Akka toolkit.

This paper presents work-in-progress. That is, it de-
scribes the problem and the intended approach, but it lacks
conclusive results. The finalization of the implementation
and the evaluation of the system are the topic of an on-
going master thesis. Nevertheless, this paper already pro-
vides important contributions. In particular:
• We present our approach and show that its memory

requirements are only logarithmic in the number of
incoming transactions and linear in the size of the can-
didate pattern space (Section 4.1);
• We describe how our approach can be distributed on

a cluster of computing nodes, which allows dealing
with very large candidate spaces (Section 4.2).

The remainder of this paper is structured as follows: Af-
ter a brief discussion of related work in Section 2 and a re-
view of the task and the standard approaches in Section 3,
we present our new approach in Section 4. Subsequently,
we describe our prototypical implementation in Section 5,
before we conclude in Section 6.

2 Related work
In recent years, a lot of research has been done to deal with
change in data streams (also called concept drift). A large
share of the proposed approaches, however, do not fit to our
setting because they make the assumption that the incom-
ing data streams contain a label and their goal is to find a
classifier for future data (e.g. [Alhammady and Ramamo-
hanarao, 2005; Wang et al., 2005]).

An approach very similar to ours is the work of [Kifer
et al., 2004], who introduce a meta algorithm based on a
2-window-approach on unlabeled data streams. The algo-
rithm measures the distance between the probability distri-
butions of the items in each window and announces change
if it lies above a certain threshold. The main difference be-
tween this approaches and ours is that we distribute the task
over a cluster of machines, exploiting distributed memory
to deal with very large candidate spaces, and using parallel
computation for speed-up. This also distinguishes our ap-
proach from the numerous approaches to the related task of

itemset mining over data streams [Cheng et al., 2008]. An-
other approach for parallel item-set mining is the work of
[Li et al., 2008]. It differs from our approach in two central
ways. First, the algorithm is not designed to work on data
streams and second, it only implicitly represents the search
space by distributing the database, where our approach rep-
resents the search space explicitly.

3 Preliminaries
In this section, we provide a formal definition of the task of
emerging pattern mining, and describe existing approaches.

3.1 Emerging Patterns and Supervised
Descriptive Rule Discovery

Emerging pattern mining [Dong and Li, 1999] belongs to
a family of tasks known as supervised descriptive rule dis-
covery [Kralj Novak et al., 2009], which also includes the
tasks of subgroup discovery and contrast set mining. The
input consists of a sequence of transactions T1, . . . ,Tm.
Every transaction consists of a set of items, i.e. Ti =
(ii,1, . . . , ii,Ni) where every item stems from a fixed uni-
verse of items.

A pattern P is also a subset of items, i.e. P = i1, . . . , in.
We say that a transaction Ti contains a pattern P if and
only if P ⊆ Ti. The (relative) support of a pattern P in
a sequence of transactions DB = T1, . . . ,Tm, denoted by
supp(P,DB) refers to the share of transactions in the se-
quence containing P.

In the classical setting, one is given two datasets DB1

and DB2, and the goal is to find patterns that have a notice-
ably higher support in DB2 than in DB1. This difference in
support is measured using some quality function, which as-
signs a real-valued figure to any given pattern. The higher
the figure, the more salient the difference in supports is con-
sidered. Different quality functions have been proposed in
the supervised descriptive rule mining community. One ex-
ample is the weighted relative accuracy (WRACC) [Lavrac
et al., 2004], defined as follows:

WRACC(P,DB1,DB2) =

supp(P,DB2)× (1− p0)− supp(P,DB1)× p0

Here p0 is defined as |DB2|
|DB1∪DB2| .

Based on these definitions, the task of top-k emerging
pattern mining is to find the k patterns having highest qual-
ity (or, in case of ties, a set of k maximum-quality patterns).

3.2 The Classical Approach To Supervised
Descriptive Rule Discovery

The classical computational approach to supervised de-
scriptive rule discovery is to load the whole dataset into
memory and to traverse the search space of candidate pat-
terns. Figure 1 will help illustrating this approach: it shows
an example built from the 4 items A, B, C and D. Fig-
ure 1(a) shows the dataset and the corresponding search
space is visualized in Figure 1(b). In this figure, the candi-
date patterns are arranged in levels, where every pattern in
a level has the same cardinality, i.e. is built from the same
number of items.

The different supervised descriptive rule discovery algo-
rithms explore the search space in different ways. Some
approaches apply some heuristic search and only explore
a subset of the search space [Lavrac et al., 2004], while
other approaches exhaustively traverse the complete search
space, e.g. relying on some tree traversal algorithm

Transactions
A
AC
B
BD
ABCD
C
AC
BC
...

(a) dataset
{}

 {A} {B} {C} {D}

{A,B} {A,C} {A,D}

{A,B,C}

{A,B,C,D}

{A,C,D}{A,B,D}

{B,C} {B,D}

{B,C,D}

{C,D}

(b) candidate space

Figure 1: An example dataset and its corresponding candi-
date space

[Grosskreutz et al., 2008]. Whenever a node is visited,
the algorithm computes statistics about the pattern, in par-
ticular the support, which allows evaluating the quality of
that candidate. The algorithms keeps track of the highest-
quality patterns during traversal. Once the traversal ends,
the top-quality pattern(s) are returned as result.

From the perspective of this paper, the details of these
approaches are less important than the fact that for ev-
ery candidate, these approaches have to compute statistics
based on the whole sequence of itemsets. Typically, the al-
gorithms will keep the dataset in memory to speedup this
task, possibly relying on some efficient data structures [Han
et al., 2000; Atzmüller and Puppe, 2006]. This approach is,
however, not applicable with streams of potentially infinite
length.

3.3 The Sampling Approach of Scheffer and
Wrobel

A completely different approach was proposed by Scheffer
and Wrobel [Scheffer and Wrobel, 2002]. The main goal
of this approach was to reduce the computation time by
trading the exact-solution-guarantee for probabilistic guar-
antees with fixed bounds on confidence and error. To this
end, the paper proposes a randomized algorithm which it-
eratively (1) draws a sample record, and (2) uses that sam-
ple to update the statistics of all candidate patterns. Once
the algorithm can guarantee, with sufficiently high proba-
bility, that a candidate will have low or high quality, it is
discarded respectively accepted at runtime. The iterations
continue until with sufficiently high probability the k best-
quality patterns are found.

4 Mining Emerging Patterns in Streams
We will first specify the task we consider, i.e. mining
emerging patterns in the setting of data stream: The input
consists of

[t0 - t1) [t1 - t2) [t2 - t3) ... [tm−1 - tm)
5 8 13 ... 27

Figure 2: Statistics stored for every candidate pattern

• an itemset stream, that is a (potentially infinite) se-
quence of pairs (T, t), where T is a transaction and t
a timestamp. We assume the timestamps to be mono-
tonically increasing.

• an integer k, and two timeframes Wold and Wnew.

The output is a mapping, from every time t to the emerging
patterns wrt. DBnew(t,Wnew) and DBold(t,Wnew,Wold).
Here, DBnew(t,Wnew) consists of all “new” transactions
having a timestamp in the interval (t − Wnew, t], and
DBnew(t,Wnew) consists of all “old” transaction occurring
in the interval (t−Wnew −Wold, t−Wnew].

4.1 Our Approach
Our approach is based on the idea of [Scheffer and Wro-
bel, 2002], namely to store a representation of the whole
search space, together with statistics about the support of
every candidate pattern. Unlike them, however, we are not
concerned with probabilistic guarantees, as we do not aim
for a randomized algorithm.

Another difference is that here, we are concerned with
streaming data, and that our goal is to compute the emerg-
ing patterns with respect to two time windows. To this end,
we do not just store, for every pattern, the number of oc-
currences in two datasets, but instead have to store all in-
formation required to continuously calculate the support in
the two windows.

As storing all incoming transactions together with their
timestamp would result in costs which are at least linear in
the number of incoming transactions, instead we only store
a discretized representation, which only stores the number
of occurrences within m smaller time windows. Figure 2
illustrates the idea. In the first time window, the pattern
occurred 5 times; in the second, it occurred 8 times, etc.
As we are only interest in the frequency of patterns in the
interval (t − Wnew − Wold, t], our representation can dis-
card old time windows, which ensures that the size of the
representation is limited.

The overall memory requirements for every entry in this
data structure is bounded logarithmically in the number of
incoming transactions. Overall, this approach has worst-
case memory requirements bounded by O(log(|T |) · |P| ·
m), where |T | denotes the maximum number of incom-
ing transactions within a timeframe of (Wold + Wnew), m
denotes the number of time windows used to cover the in-
terval (t−Wnew −Wold, t], and |P| denotes the size of the
candidate pattern space.

4.2 Distributed Computation
One issue with the approach to store a representation of
the search space is that this can result in large memory re-
quirements. It is obvious that the size of the space search
is exponential in the number of items, and that hence its
representation may exceed the main memory of a single
machine. For this reason, it would be desirable to have a
distributed algorithm that can run on a cluster of machines.
In particular, we aim at an algorithm that can (almost) uni-
formly distribute the representation of the search space on
any given cluster of N machines.

{}

 {A}

{B}

{C}

{A,B}

{A,C}

{A,B,C}

Search
space

Hash function

{A,B,D}

{A,C,D}

{D}

...

{A,B,C,D}

{A,D}

Node 1 Node 2

Node 3

Figure 3: Distribution of the Candidate Space on a Cluster
of Machines

Our solution for splitting the search space is illustrated
in Figure 3 and works as follows: On the left, the figure
shows the candidate pattern space, while on the right the
different machines in the cluster are presented. Every pat-
tern from the candidate pattern space is mapped to one of
the nodes in the cluster by a hash function. The hash func-
tion deterministically determines the target node for each
candidate pattern. In the given example the cluster consists
of three separate nodes where each node is responsible for
storing the statistics of a subset of all patterns. Together, the
nodes represent the entire search space. Whenever a certain
candidate pattern needs to be updated, the algorithm can
quickly identify the responsible node which subsequently
updates the pattern’s statistics in the search space.

5 Implementation
We will now provide a overview of our implementation,
which is based on the Akka toolkit.

5.1 Akka
The Akka toolkit (http://akka.io/) provides a high-level
framework for developing distributed applications follow-
ing the actor model. The user can create actors that imple-
ment different behavior. These actors can be distributed to
remote nodes and communicate with each other by pass-
ing messages. With this, the user can create an topology of
data-source and compute nodes, define their relations and
the functions that are applied on the data.

Akka was chosen over other frameworks like Hadoop or
Storm for different reasons. In contrast to Strom, Akka
proved to have a more mature code base and documenta-
tion. Hadoop’s focus on the other hand lies more on batch
data processing than on streaming data processing.

5.2 A topology for Emerging Pattern Mining
Figure 4 describes the central topology of our system for
mining Emerging Patterns. The control flow goes from left
to right. The leftmost node represents a source of transac-
tions. Regarding the Twitter example, this node would emit
a flow of tweets. A transaction dispatcher node connects to
the data stream and distributes the received transactions to
a set of candidate pattern generator nodes by a broadcast.
Every generator node receives the transaction Tand sub-
sequently creates a set of patterns that consists of all those
patterns that are affected by the transaction and are element
of its partition of the candidate space.

To control the amount of memory and computation re-
quired, we additionally restrict the cardinality of the pat-
terns considered. This is a standard approach in super-
vised descriptive rule discovery (e.g. [Grosskreutz et al.,

Data stream source

Search space

Broadcast

represented
by

best
patterns

aggregated
Patterns

Transaction
dispatcher

Pattern
generator

&
Search-
Space

Pattern
aggregator

Pattern
generator

&
Search-
Space

Pattern
generator

&
Search-
Space

Pattern
generator

&
Search-
Space

Logger

Visualization
web service

Figure 4: Topology of the system for performing Emerging Patterns Mining

2008]). Lets say we have a set of items in a transaction
T = {i1, . . . , in} and an integer value c denoting the max-
imal cardinality of the patterns to be considered. Then the
power-set with limited cardinality c of that transaction is
defined as follows:

Pc(T) = {s ⊆ T : |s| < c}
The generator has two central functions. It is respon-

sible for generating patterns and for keeping track of the
patterns’ statistics. Following to the generation, it updates
the statistics in an local data structure.

The node periodically calculates which of the patterns it
takes care of have the highest quality value. It transfers this
list of best patterns to a subsequent node that receives these
lists from all nodes, creating an aggregated list of all global
patterns. The two rightmost nodes represent example ap-
plications for the output, like logging to a file or presenting
the result in a web page.

6 Discussion
In this paper, we have motivated a variation of the task of
emerging pattern mining, which operates on data streams.
The idea is to search for itemsets which occur more of-
ten in recent transactions than in older transactions. We
have presented a new approach to this task, which allows
distributing the computation and the representation of the
candidate pattern space on a cluster of machines. This dis-
tributed representation is arguably the most distinguishing
feature of our approach, compared to existing approaches
to related tasks like frequent itemset mining on streams.

This paper presents work in progress and much remains
to be done. In particular, we still lack an empirical evalua-
tion of the approach. This will be the topic of an on-going
master thesis, which will answer questions about the scala-
bility of the approach and possible limitations.

Acknowledgments
This publication has been produced in the context of the
EU Collaborative Project P-Medicine, which is funded by
the European Commission under the contract ICT-2009-6-
270089.

References
[Alhammady and Ramamohanarao, 2005] Hamad Alham-

mady and Kotagiri Ramamohanarao. Mining emerging

patterns and classification in data streams. In Proceed-
ings of the 2005 IEEE/WIC/ACM International Confer-
ence on Web Intelligence, WI ’05, 2005.

[Atzmüller and Puppe, 2006] Martin Atzmüller and Frank
Puppe. SD-map - a fast algorithm for exhaustive sub-
group discovery. In PKDD, pages 6–17, 2006.

[Cheng et al., 2008] James Cheng, Yiping Ke, and Wilfred
Ng. A survey on algorithms for mining frequent itemsets
over data streams. Knowl. Inf. Syst., 16(1):1–27, 2008.

[Dong and Li, 1999] Guozhu Dong and Jinyan Li. Effi-
cient mining of emerging patterns: Discovering trends
and differences. pages 43–52, 1999.

[Grosskreutz et al., 2008] Henrik Grosskreutz, Stefan
Rüping, and Stefan Wrobel. Tight optimistic estimates
for fast subgroup discovery. In ECML/PKDD (1), pages
440–456, 2008.

[Han et al., 2000] Jiawei Han, Jian Pei, and Yiwen Yin.
Mining frequent patterns without candidate generation.
In SIGMOD Conference, pages 1–12, 2000.

[Kifer et al., 2004] Daniel Kifer, Shai Ben-David, and Jo-
hannes Gehrke. Detecting change in data streams.
VLDB ’04, pages 180–191. VLDB Endowment, 2004.

[Kralj Novak et al., 2009] Petra Kralj Novak, Nada
Lavrač, and Geoffrey I. Webb. Supervised descriptive
rule discovery: A unifying survey of contrast set,
emerging pattern and subgroup mining. Journal of
Machine Learning Research, 10:377–403, 2009.

[Lavrac et al., 2004] N. Lavrac, B. Kavsek, P. Flach, and
L. Todorovski. Subgroup discovery with CN2-SD. Jour-
nal of Machine Learning Research, 5(Feb), 2004.

[Li et al., 2008] Haoyuan Li, Yi Wang, Dong Zhang, Ming
Zhang, and Edward Y Chang. Pfp: parallel fp-growth
for query recommendation. In ACM conference on Rec-
ommender systems. ACM, 2008.

[Scheffer and Wrobel, 2002] Tobias Scheffer and Stefan
Wrobel. Finding the most interesting patterns in a
database quickly by using sequential sampling. Journal
of Machine Learning Research, 3:833–862, 2002.

[Wang et al., 2005] Peng Wang, Haixun Wang, Xiaochen
Wu, Wei Wang, and Baile Shi. On reducing classi-
fier granularity in mining concept-drifting data streams.
ICDM ’05. IEEE Computer Society, 2005.

