
Smoothed Discretization for Simplified Cutpoints

Georg Dietrich, Florian Lemmerich, and Frank Puppe
University of Würzburg

{dietrich, lemmerich, puppe}@informatik.uni-wuerzburg.de

Abstract
This paper describes work in progress. Dis-
cretization is one of the most common pre-
processing steps in data mining and machine
learning. We propose a novel approach to ob-
tain simpler discretization cutpoints, which are
easier to capture for human users, e.g., as they
require less non-zero digits. For that purpose, a
post-processing step is performed after applying
an arbitrary conventional discretization method.
It trades-off the necessary modifications in com-
parison to the original discretization scheme with
the reduction in complexity of the cutpoints. Ex-
periments with classification tasks show, that this
leads to considerably simpler cutpoints with only
marginal influence on the algorithmic perfor-
mance, i.e., the prediction accuracy.

1 Introduction
The following paper reports preliminary results of ongoing
research. Many machine learning and data mining algo-
rithms, e.g., rule learners or decision-tree algorithms, can
be applied automatically, but aim at models, which allow
for introspection by the user. Other approaches, such as
subgroup discovery, are not intended for automatic appli-
cation at all, but provide patterns, which are directly in-
terpreted by human experts. Both categories of algorithms
require simple input data to build understandable models.

Discretization is a key pre-processing technique. It trans-
forms numeric attributes into nominal ones in order to ap-
ply algorithms, which allow only for nominal attributes
as inputs. Over the last decades a large number of so-
phisticated discretization methods have been proposed [7;
4]. Until now, research on these methods has focussed
almost exclusively on the predictive power of the thresh-
olds, but mostly ignored the resulting complexity of the
discretization thresholds. This leads to discretization in-
tervals that are inconvenient for humans, e.g., income =
[38952.4; 60427.2[. Findings for such boundaries are not
only unintuitive, but also potentially less useful in the ap-
plication domain, as they are difficult to compare with pre-
vious knowledge. Additionally, such discretization bounds
are potentially subject to over-fitting on the training data.

In this paper, we present a novel meta-method for dis-
cretization that aims at obtaining discretization thresholds,
which are more intuitive for human users. For example, a
very similar, but much simpler discretization interval for
the above interval could be income = [40000; 60000[.
Our approach obtains such simpler intervals by post-
processing the resulting cutpoints of an arbitrary discretiza-
tion method. In doing so, we combine the advantages of
sophisticated discretization algorithms with intuitive dis-
cretization thresholds. The extent of the modification is

traded-off against the complexity reduction of the results.
Although our approach is applicable as a pre-processing
method for arbitrary data mining tasks, the evaluation fo-
cuses in this work-in-progress on the classification tasks,
since their results can be easily compared.

The rest of this paper is structured as follows: Section
2 introduces notations and discusses some related work.
Next, Section 3 presents our novel approach of smoothed
discretization bounds. First experimental results are pro-
vided in Section 4. The paper concludes with pointers to
future work in Section 5.

2 Background and Related Work
In this paper, a dataset D = (I,A) is formally defined as
an ordered pair of a set of instances I = i1, i2, . . . , iy and
a set of attributes A = A1, A2, . . . , Az, C. Each attribute
A ∈ A : I → dom(A) is a function that indicates a charac-
teristic of an instance by mapping it to a value in its range.
Consequently, Am(i) denotes the value of the attribute Am
for the instance i. In our setting, there is one class attribute
in each dataset AC , which is to be predicted by a classifi-
cation algorithm. We assume the class attribute to be nom-
inal and all other attributes A1, . . . , Ai to be numeric, i.e.,
dom(Ai) = R.

Many data mining algorithms are not directly suited for
numeric attributes, but require nominal attributes as in-
put data. Therefore, discretization algorithms are used
in a pre-processing step to transform a numeric attribute
A into a new nominal attribute A′. These methods split
the range of a numeric attribute into n + 1 disjunct in-
tervals defined by a set of cutpoints cp1, . . . , cpn: R =
] − ∞; cp1],]cp1; cp2], . . . ,]cpn−1; cpn],]cpn; +∞[. The
new attribute has one value for each of these intervals. In-
stance values are mapped accordingly:

A′(i) =


0, if A(i) ≤ cp1
k if cpk < A(i) ≤ cpk+1, k = 1, . . . n
n if A(i) > cpk+1

The cutpoints for different attributes are determined
independent from each other by using a discretization
method. For this task, a large amount of discretiza-
tion methods have been proposed in literature, see [7;
4] for two recent overviews. The most popular methods
include Equal-frequency discretization, top-down entropy-
based discretization [3] and bottom-up discretization based
on chi-values [6; 8]. Discretization methods, which lead to
easy-to-read intervals, have received only little attention so
far. An exception to this is the intuitive partitioning pro-
posed by Han and Kamber [5] that discretizes an attribute
into “natural” segments: In a top-down approach, the range
of the attribute A is split into three, four, or five sub-
intervals depending on the difference in the most significant
digit in the attribute range. In contrast to this technique, our
novel method joins the power of supervised discretization

algorithms with the goal of easy-to-read cutpoints. It can
be combined with arbitrary discretization methods.

3 Smoothed Discretization
In the next section, we present our novel approach for dis-
cretization. The main idea is as following: First, any tra-
ditional discretization algorithm is run. The resulting set
of cutpoints cp1, . . . , cpn is used as the input for our tech-
nique. A new discretization scheme is obtained by modi-
fying the cutpoints cpi one-by-one. For each cutpoint, an
alternative new cutpoint is determined. The selection of
the new cutpoints follows two criteria: 1. The replacement
cutpoint should be ”natural”, i.e., less complex and easier-
to-read. 2. The replacement cutpoint should be as close to
the original cutpoint as possible. In the following sections,
we present novel measures to quantify these criteria as well
as a simple scoring function, which allows to trade-off be-
tween them. Furthermore, we outline a simple algorithm
that allows to identify the best alternative cutpoint. It gen-
erates a number of candidate cutpoints, which are scored
by the presented measure.

3.1 Complexity
The perceived complexity of a number differs from user
to user. Due to this inherent subjectiveness quantifying its
complexity is a difficult issue. One can consider several
different intuitions to measure the complexity of a number,
which are plausible for most users: First, short numbers
are easier to comprehend than longer numbers: As a con-
sequence the number 624 should receive a lower complex-
ity score than a number like 7245. Second, one benchmark
could be, how difficult it is to remember a number. There-
fore, 1.000 would have a lower complexity score than 8103.
A potential third intuition is, that numbers should receive
a lower complexity score, if they are used more often by
humans.

Next, we present one simple method to capture the com-
plexity of a number. We are fully aware that this is defi-
nitely not the only solution for this problem and one can
think of several variations of this measure. Our measure
is based on the decimal representation of a number x. The
scoring is based on the number of digits k(x), which are re-
quired to write x, excluding trailing zeros. The count k(x)
is increased by one, if it contains a decimal point. Then,
the complexity for x is defined as:

complexity(x) =


0, if x = 0
1 if x = 10n, n ∈ N
1 + k(x) else

The following table shows some examples for this com-
plexity measure.

x complexity(x) x complexity(x)
0 0 400 2
1 1 725 4

100 1 -725 4
4 2 7.25 5

This basic measure could be improved in a variety of
directions: One may argue that a number ending with the
digit 5 is simpler than other numbers. E.g., 95 can be con-
sidered as a simpler, more intuitive bound than 93. An-
other issue is, if a decimal really increases the complexity,
i.e., if 0.4 is a more complex number than 4. Although
these considerations could be incorporated in more sophis-
ticated variations in future approaches, we focus in this pa-
per on the complexity measure presented above for the sake
of simplicity and transparency.

3.2 Modification measures
Additionally, our approach requires a measure that com-
pares, how strongly the original discretization scheme is
modified, if a candidate cutpoint cp′k is used instead of the
respective original cutpoint cpk. To quantify this amount
of modification we propose two measures.

Distance-based deviation measures
The distance-based measure describes the difference in the
range of the discretized attribute. It is computed as the per-
centage of the interval between the original cutpoint cpk
and the candidate cutpoint cp′k in relation to the distance
between the current cutpoint cpk and the neighboring cut-
point in the original discretization scheme. For candidates
smaller than the original cutpoint, the neighboring cutpoint
is given by the next lowest cutpoint cpk−1, otherwise it is
the next highest cutpoint cpk+1. For the special cases, that
the current cutpoint is the first one (k = 1) or the last one
(k = n), the instances in the dataset with the lowest, re-
spectively highest, attribute values are used as neighboring
cutpoints. Formally it is computed as (ignoring the special
cases):

moddist(cp′k, cpk) =


0 if cp′k = cpk
cpk−cp′k

cpk−cpk−1
if cp′k < cpk

cp′k−cpk

cpk+1−cpk
if cp′n > cpk

Instance-based deviation measures
The distance-based deviation measure just considers the
difference between the original cutpoint and the candidate
cutpoint, independent of additional information contained
in the dataset. The second approach, the instance-based de-
viation, additionally takes the values of each instance i for
the attribute A, which is discretized, into account. It mea-
sures the percentage of the instances in the interval, which
are relocated to another interval, if the original cutpoint cpk
is exchanged with the candidate cp′k:

modinst(cp′k, cpk) =


0 if cp′k = cpk
|{i|cp′k ≤A(i)<cpk}|
|{i|cpk−1≤A(i)<cpk}| if cp′k < cpk
|{i|cpk ≤A(i)<cp′k}|
|{i|cpk ≤A(i)<cpk+1}| if cp′k > cpk

3.3 Smoothed cutpoint selection
Cutpoint smoothing is a trade-off between reducing the
complexity of a cutpoint and modifying the intervals gen-
erated by the original discretization method. For that pur-
pose, we propose the following family of functions that
balances between these two goals using the complexity
and modification measures presented above. The candidate
with the lowest score according to this measures is consid-
ered the best cutpoint.

score(cp′k) = complexity(cp′k) +
1

α
·mod(cp′k, cpk)

Here, α is a user chosen parameter. For high values of α
less complex cutpoints are preferred, even if they strongly
modify the original solution. In contrast, lower values of
α emphasize the similarity to the original discretization
scheme, even if the resulting cutpoints are only slightly less
complex than the original ones. α can be interpreted, which
ratio of an interval the cutpoint can be moved to reduce the
complexity by one point. E.g., if α = 0.05 the algorithm
will shift the cutpoint by up to 5% of the adjacent interval
(based on the pure difference or the number of contained
instances), if this decreases the complexity by one.

3.4 Computation of smoothed cutpoints
The computation of the best smoothed cutpoint is straight
forward: First, candidates are generated in two directions.
For that purpose the cutpoint is iteratively rounded up with
decreasing precision. This is repeated, until either zero or

the middle of the adjacent interval is reached. This pre-
vents, that two different original cutpoints are smoothed to
identical values. Candidate cutpoints smaller than the orig-
inal cutpoint are obtained analogously by rounding down.
Additionally, the original cutpoint is also considered as a
candidate. Then, every candidate is evaluated by the score-
function with user-chosen parametrization. The best (low-
est) scoring candidate then replaces the original cutpoint in
the smoothed discretization scheme.

3.5 Example
We demonstrate our approach in a small example: Initially
the user chooses a parameter α for the scoring function and
one of the two proposed modification measures. We as-
sume an α value of 0.01 and the distance-based deviation
measure in this example. To discretize an attribute A with
our approach, first a traditional discretization algorithm,
e.g., frequency-based discretization, is executed. We as-
sume, this method resulted in the 3 cutpoints cp1 = −724,
cp2 = 692, and cp3 = 1525. For each of these cutpoints,
our approach determines a smoothed cutpoint cp∗i , which
should be easier-to-read. In this example we focus on the
cutpoint cp2. For this cutpoint, first candidates for alter-
native cutpoints are determined by rounding up and down.
This results in the candidates 700 and 1000 for rounding up
and 690, 600, and 0 for rounding down. Additionally, the
original cutpoint 692 is considered as a candidate. For each
of these six cutpoint candidates the score is determined as
described in Section 3.3. For example, the score for the
candidate 700 is determined as follows: The complexity of
the candidate is complexity(700) = 2. Its distance is com-
puted as 700−692

1525−692 ≈ 0.0096. The score for this candidate
is score(700) = 2 + 1

0.01 · 0.0096 = 2.96. Analogously,
the score for the cutpoint 1000, which has a complexity of
1 is determined as 1+ 1

0.01 ·
1000−692
1525−692 ≈ 37.97. As another

example, the original cutpoint has a complexity of 4 and
a distance of 0 and thus a score of score(692) = 4. As
it turns out after computing the scores for all six cutpoint
candidates, 700 has the lowest (best) score and thus is used
as a replacement for the original cutpoint in the novel dis-
cretization scheme.

4 Evaluation
To evaluate the effectiveness of our novel approach, we
performed an experimental study on a classification task,
using the well-known decision tree algorithm C4.5 [9]. We
used 12 data sets from the UCI Machine Learning Database
Repository [2] and from the KEEL data set repository [1].
Except for the class attributes, these data sets consists of
numerical attributes only.

We applied a standard 10-fold cross-validation proce-
dure. For each training data set the discretization cut-
points were determined for the three popular discretization
methods equal-frequency discretization, entropy-based dis-
cretization, and Chi2 discretization. Afterwards, the
introduced smoothing techniques were performed with
distance-based and instance-based modification measures
and with different settings for the parameter α in the scor-
ing function. A very low α value (here α = 10−7)
in combination with an instance-based distance measure
means, that the cutpoint is replaced with the alternative
cutpoint with the lowest complexity, which implies no re-
allocation of any instance to another discretization inter-
val. For the basic discretization and for the classification
algorithm implementations from the KEEL software suite
were used with default parametrization. In particular, the
equal-frequency discretization performed a split into 10 in-
tervals. For the resulting discretized data a classifier was
learned on the training data and the accuracy was measured

distance instance
α comp acc comp acc
0.0 9.293 0.812
10−7 4.766 0.811
0.01 4.668 0.810 4.350 0.807
0.05 3.810 0.812 3.697 0.813
0.1 3.240 0.811 3.337 0.817
0.3 2.672 0.800 2.665 0.816
0.5 2.509 0.799 2.619 0.813

(a) Entropy-based discretization

distance instance
α comp acc comp acc
0.0 9.102 0.781
10−7 4.879 0.780
0.01 4.818 0.784 4.520 0.780
0.05 4.002 0.784 4.017 0.785
0.1 3.488 0.774 3.645 0.788
0.3 2.942 0.768 2.887 0.780
0.5 2.746 0.771 2.841 0.779

(b) Chi2 discretization

distance instance
α comp acc comp acc
0.0 9.042 0.784
10−7 4.981 0.784
0.01 5.121 0.784 4.730 0.785
0.05 4.301 0.780 4.266 0.782
0.1 3.912 0.782 3.931 0.780
0.3 3.277 0.780 3.372 0.774
0.5 2.992 0.785 3.298 0.780

(c) Equal-frequency discretization

Table 1: Results for different values for the parameter α in
the scoring function and both modification measures. Each
table refers to a different discretization technique. For each
setting, the prediction accuracy of the classification algo-
rithm and the cutpoint complexity are denoted averaged
over all data sets.

in the test data. Summarized results, which are averaged
over all datasets, are shown in Tables 1a, 1b and 1c. Ex-
emplary detailed result for all datasets using entropy-based
discretization are denoted in Tables 2a and 2b. These ta-
bles show the predictive accuracy of the classifier with the
discretized attributes as input as well as the averaged com-
plexity score of the smoothed discretized cutpoints. All
base discretizers lead to a high complexity of the used cut-
points: the cutpoints are overall hard-to-read for humans.
For all discretizers, smoothing these cutpoints even with
only low values of α leads to a drastic decrease of the com-
plexity. The complexity of cutpoints is further reduced for
increased parameter values of α. These adaptations influ-
ence the accuracy of the classifiers only marginally, i.e.,
the improved classification accuracy of entropy-based dis-
cretization is maintained even for substantially simplified
cutpoints. This may hint at possible overfitting of the dis-
cretization algorithms. Only for the highest settings of α
(α ≥ 0.1) a slight decrease of the accuracy can be observed
for the supervised discretization algorithms. The reduction
of the accuracy is smaller for instance-based smoothing
methods, while similar complexity reductions are achieved.
Therefore, this variation is to be preferred based on the cur-
rent results. These experiments overall demonstrate the ef-
fectiveness of our novel approach, as it succeeds in decreas-
ing the complexity of the used cutpoints with only marginal
influence on the main algorithm, which uses the discretiza-
tion intervals.

α 0.0 0.01 0.05 0.1 0.3 0.5
comp acc comp acc comp acc comp acc comp acc comp acc

appendicitis 8.729 0.834 5.184 0.852 4.936 0.852 4.436 0.832 3.607 0.868 3.547 0.878
banana 9.331 0.748 4.423 0.752 3.335 0.745 3.207 0.745 2.296 0.745 2.296 0.745
glass 11.973 0.758 4.658 0.735 3.789 0.731 3.173 0.747 2.879 0.700 2.844 0.700
movement 10.978 0.606 5.356 0.567 4.847 0.589 4.534 0.589 4.035 0.586 3.425 0.569
pageblocks 6.359 0.968 4.205 0.966 3.483 0.965 3.071 0.965 2.452 0.963 2.298 0.965
phoneme 9.030 0.812 4.909 0.814 3.771 0.817 3.203 0.813 2.539 0.806 2.353 0.804
segment 11.255 0.939 4.454 0.937 3.424 0.944 3.116 0.938 2.679 0.936 2.556 0.941
sonar 7.794 0.764 5.407 0.759 4.882 0.744 4.533 0.759 3.926 0.700 3.753 0.701
spambase 8.121 0.927 4.202 0.924 2.806 0.920 2.410 0.918 2.139 0.918 2.044 0.920
titanic 11.333 0.771 4.333 0.771 4.000 0.771 1.667 0.771 1.667 0.771 1.667 0.771
vowel 8.814 0.719 4.601 0.736 3.047 0.720 2.600 0.731 1.549 0.687 1.305 0.669
wine 7.801 0.898 4.286 0.904 3.401 0.944 2.935 0.922 2.302 0.915 2.014 0.921

(a) Distance-based modification

α 10−7 0.01 0.05 0.1 0.3 0.5
comp acc comp acc comp acc comp acc comp acc comp acc

appendicitis 5.250 0.834 5.250 0.834 4.749 0.842 4.447 0.860 3.933 0.859 3.933 0.859
banana 5.186 0.749 4.215 0.751 3.363 0.747 2.662 0.746 2.315 0.746 2.216 0.741
glass 4.814 0.753 4.755 0.753 4.147 0.765 3.840 0.754 2.775 0.756 2.618 0.721
movement 5.572 0.603 5.384 0.564 4.896 0.589 4.606 0.569 4.047 0.614 4.003 0.631
pageblocks 4.243 0.968 3.891 0.968 3.550 0.966 3.259 0.966 2.821 0.965 2.750 0.965
phoneme 5.773 0.813 4.955 0.815 4.041 0.823 3.611 0.829 2.769 0.825 2.723 0.825
segment 5.152 0.939 4.194 0.938 3.372 0.944 3.086 0.942 2.605 0.936 2.558 0.936
sonar 5.718 0.759 5.396 0.735 4.943 0.750 4.633 0.783 4.285 0.778 4.267 0.768
spambase 4.851 0.927 4.450 0.929 3.930 0.928 3.549 0.925 1.238 0.896 1.165 0.890
titanic 0.667 0.771 0.667 0.771 0.667 0.771 0.667 0.771 0.667 0.771 0.667 0.771
vowel 5.461 0.720 4.778 0.725 3.091 0.718 2.549 0.738 2.028 0.718 2.028 0.718
wine 4.507 0.898 4.267 0.898 3.614 0.915 3.137 0.921 2.494 0.933 2.494 0.933

(b) Instance-based modification

Table 2: Detailed results for different values of the parameter α in the scoring function. Each table refers to a different
modification measure. For each setting and each data set, the average prediction accuracy of the classification algorithm
and the average cutpoint complexity are denoted. As basis entropy-based discretization was used.

5 Conclusions
In this paper we proposed a novel approach on discretiza-
tion, which aims at cutpoints, which are easy-to-read for
human users, e.g., as they require less non-zero digits. For
that purpose, a post-processing step is performed after ap-
plying an arbitrary conventional discretization method. It
trades-off the necessary modifications in comparison to the
original discretization scheme with the reduction in com-
plexity. In that direction novel functions for measuring the
complexity of a number and for measuring the difference
between the original cutpoints and candidates for alterna-
tives have been discussed. Experiments with classification
tasks showed, that our approach leads to considerably sim-
pler cutpoints, while the algorithmic performance, i.e., the
prediction accuracy, is only marginally influenced.

Since this paper presents work in progress, we plan to ex-
tend it in several areas: The proposed function to measure
the complexity of a number is currently very simple and
could be replaced by a more sophisticated one. This, how-
ever, will require an extensive user study to evaluate human
perception. Furthermore, we will extend the performed ex-
periments to descriptive data mining tasks such as subgroup
discovery. Since the results of these tasks are directly in-
terpreted by domain experts, natural, easy-to-read intervals
are especially useful in these areas.

References
[1] Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac, J.,

Garcia, S.: Keel data-mining software tool: Data set
repository, integration of algorithms and experimental
analysis framework. Multiple-Valued Logic and Soft
Computing 17(2-3), 255–287 (2011)

[2] Blake, C., Merz, C.J.: {UCI} Repository of machine
learning databases (1998)

[3] Fayyad, U.M., Irani, K.: Multi-interval discretization
of continuous-valued attributes for classification learn-
ing (1993)

[4] Garcı́a, S., Luengo, J., Saez, J., Lopez, V., Herrera, F.:
A survey of discretization techniques: taxonomy and
empirical analysis in supervised learning. IEEE Trans-
actions on Knowledge and Data Engineering 25(4),
734–750 (2013)

[5] Han, J., Kamber, M., Pei, J.: Data mining: concepts
and techniques. Morgan kaufmann (2006)

[6] Kerber, R.: Chimerge: Discretization of numeric at-
tributes. In: Proceedings of the tenth national con-
ference on Artificial intelligence. pp. 123–128. AAAI
Press (1992)

[7] Kotsiantis, S., Kanellopoulos, D.: Discretization tech-
niques: A recent survey. GESTS International Trans-
actions on Computer Science and Engineering 32(1),
47–58 (2006)

[8] Liu, H., Setiono, R.: Chi2: feature selection and dis-
cretization of numeric attributes. Proceedings of 7th
IEEE International Conference on Tools with Artificial
Intelligence pp. 388–391 (1995)

[9] Quinlan, J.R.: C4.5: programs for machine learning.
Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (1993)

